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Toxidromes constitute patterns of symptoms and signs caused by specific toxic
effects that guide emergency treatments. Computational identification of chemicals
that cause different toxidromes allows us to rapidly screen novel compounds and
compound classes as to their potential toxicity. The aim of the current study was to
create a computational toolset that canmap chemicals to their potential toxidromes.
Hence, we evaluated the performance of a state-of-the-art deep learning
method—the recently developed communicative message passing neural
network (CMPNN)—for its ability to overcome the use of small datasets for
training deep learning models. Our results indicated that multi-task training—a
technique known for its ability to use multiple small datasets to train conventional
deep neural networks—works equally well with CMPNN. We also showed that
CMPNN-based ensemble learning results in more reliable predictions than those
obtained using a single CMPNN model. In addition, we showed that the standard
deviations of individual model predictions from an ensemble of CMPNN models
correlatedwith the errors of ensemble predictions and could be used to estimate the
reliability of ensemble predictions. For toxidromes that do not have well-defined
molecularmechanisms or sufficient data to train a deep learningmodel, we used the
similarity ensemble approach to develop molecular structural similarity-based
toxidrome models. We made the toolset developed in this study publicly
accessible via a web user interface at https://toxidrome.bhsai.org/.
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Introduction

Rapid identification of adverse health effects of chemicals is important for identifying
and classifying their potential toxicity. Experimentally testing and classifying thousands of
commercial product components, drugs and drug candidates, as well as newly developed
synthetic chemicals for their potential to cause health hazards is not feasible, triggering the
development of multiple alternative approaches based on high-throughput-assay data,
chemoinformatics, and computational methods (Vinken, 2013; Allen et al., 2014; Oki et al.,
2016; Liu et al., 2017; Schyman et al., 2017; Liu et al., 2018b; Strickland et al., 2018; Wang
et al., 2019; AbdulHameed et al., 2021; Liu et al., 2022).

The concept of toxidromes has been proposed to focus on acute intoxication signs and
symptoms as a means to quickly identify the underlying compound class and guide treatments.
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Toxidromes are a set of adverse health signs and symptoms that are
caused by specific classes of chemicals eliciting similar identifiable sets of
signs and symptoms (Holstege and Borek, 2012). Figure 1 shows nine
major toxidromes defined in the U.S. Department of Homeland
Security’s “Report on the Toxic Chemical Syndrome. Definitions and
Nomenclature Workshop” (2012). Table 1 summarizes the known
molecular mechanisms for five toxidromes that are traceable to
chemical interactions with specific receptor-chemical interactions, e.g.,
the opioid toxidrome is due to chemical activation of the mu, delta, and/
or kappa opioid receptors (Strickler et al., 2018). Similarly, the
cholinergic and anticholinergic toxidromes are due to increased and
decreased acetylcholine activity because of activation or inhibition of
muscarinic and nicotinic receptors and acetylcholinesterase, respectively
(Lott and Jones, 2023). All the receptors involved in these toxidromes are
drug targets, and the activities of many chemicals at these targets have
been experimentally evaluated. The last four toxidromes listed in Table 1
have molecular mechanisms that are less well defined and/or pose an
additional challenge as the number of chemicals investigated for their
potential to cause these toxidromes is too small for training robust
machine learning models.

Here, we developed computational tools for rapid screening of
chemicals with potential to cause these toxidromes.We created the tools
based on recently developed communicative message passing neural
networks (CMPNNs) (Song et al., 2020) for the toxidromes with well-
known molecular mechanisms and using the similarity ensemble
approach (SEA) (Keiser et al., 2007) for the other toxidromes. To
deploy the toolset developed in this study for public access, we created a
web user interface at https://toxidrome.bhsai.org.

Materials and methods

Molecular activity data

We downloaded relevant molecular binding and functional
activity data as described in Table 1 from BindingDB—a public,

web-accessible database of measured binding affinities and
functional activities (Gilson et al., 2016). The data in BindingDB
were extracted by the BindingDB project from the literature and
from patents, selected PubChem confirmatory BioAssays, and
ChEMBL entries for which a well-defined protein target is
provided. For each of the protein targets listed in Table 1, we
retrieved compounds with relevant functional activities in all
organisms and removed duplicate entries and entries with
uncertain numerical activity values, such as those larger or
smaller than a threshold value. The relevant functional activities
include the half-maximal effective concentrations (EC50) or half-
maximal inhibitory concentrations (IC50), expressed as moles/L
(M). We faced a major challenge in that the number of chemicals
with relevant functional activity data for a specific protein receptor
of a specific organism may be too low to train a robust deep learning
model. Thus, we also retrieved additional large chemical binding-
affinity datasets and used them as auxiliary datasets for multi-task
training to help develop more robust CMPNN models with the
limited functional activity data. Table 1 summarizes the number of
chemicals with functional and binding activity data for each protein
target and organism. We converted EC50, IC50, and Ki (binding
affinity) data into pEC50, pIC50, and pKi before using them to train
deep learning models. All the raw data used for model development
are provided in Supplementary Table S1 (Toxidrome Data. xlsx) and
at https://github.com/BHSAI/Toxidrome.

Methods

For predicting molecular bioactivities, the directed message
passing neural network (DMPNN) has been shown to
outperform most other DNNs (Yang et al., 2019). Recently, the
communicative message passing enhancement to the DMPNN
method was shown to improve prediction results, establishing it
as a powerful deep learning method for mining molecular
bioactivity data (Song et al., 2020). In this study, we chose to use

FIGURE 1
Toxidromes listed in the 2012 U.S. Department of Homeland Security workshop on toxic chemical syndromes (Oki et al., 2016). The toxidromes on
the left have well-known molecular mechanisms through protein-receptor interactions. These are typically known drug targets with a relatively large
amount of available experimentally determined data. The toxidromes on the right either do not have well-defined molecular mechanisms or lack
sufficient experimental data for deep learning training.
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TABLE 1 Summary of molecular mechanisms, protein targets, and number of chemicals with relevant experimental data collected from the public domain.

Toxidrome Molecular mechanisms Number of chemicals with data from the
public domain

Data source

Chemicals Data Target Species

Opioid Agonism (activation) of the mu, delta, and/or kappa
opioid receptors

1,272 EC50 mu receptor human BindingDB

796 EC50 delta receptor human

1,347 EC50 kappa receptor human

4,831 Ki mu receptor human

3,290 Ki delta receptor human

3,497 Ki kappa receptor human

Convulsant Glycine and GABA antagonism or glutamate
agonism and glycine re-uptake transporter agonism

66 IC50 GABA
α1β2γ2 receptor

human BindingDB

82 EC50 GluN ε2ζ1 receptor rat

90 EC50 GlyT2 transporter human

90 EC50 GluA receptor human

169 EC50 GluN ε3ζ1 receptor rat

283 EC50 GlyT1 transporter human

578 Ki GABA
α1β3γ2 receptor

human

619 Ki GABA
α3β3γ2 receptor

human

626 Ki GABA
α5β3γ2 receptor

human

727 Ki GABA
α2β3γ2 receptor

human

Cholinergic Activation of muscarinic and nicotinic receptors and
inhibition of acetylcholinesterase

806 EC50 M1 receptor human BindingDB

112 EC50 M2 receptor human

307 EC50 M4 receptor human

120 EC50 M5 receptor human

121 EC50 M1 receptor rat

149 EC50 M4 receptor rat

4,974 IC50 AChE eel

4,626 IC50 AChE human

2,629 IC50 BChE human

1,125 IC50 AChE rat

393 IC50 AChE cow

360 IC50 AChE mouse

Anticholinergic Inhibition of muscarinic and nicotinic receptors and
activation of acetylcholinesterase

587 IC50 M1 receptor human BindingDB

378 IC50 M2 receptor human

706 IC50 M3 receptor human

136 IC50 M4 receptor human

160 IC50 M5 receptor human

278 IC50 M1 receptor rat

(Continued on following page)
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this state-of-the-art CMPNN method to develop quantitative
structure-activity relationship models for rapid screening of
chemicals for their potential to cause toxidromes.

Table 1 shows that for many toxidrome-relevant protein targets,
the number of chemicals with experimentally determined functional
activity data is small. To develop robust models with a small number
of training data and large number of DNN parameters, we evaluated

and applied multi-task training and ensemble learning techniques.
Figure 2A shows conventional single-task training where all model
parameters are optimized by a single dataset, and Figure 2B shows
multi-task training where a larger number of model parameters are
shared by all the tasks. In the latter case, the models are trained by all
the datasets, equivalent to being trained on a combined larger
training set. Studies using conventional feed-forward DNNs have

TABLE 1 (Continued) Summary of molecular mechanisms, protein targets, and number of chemicals with relevant experimental data collected from the
public domain.

Toxidrome Molecular mechanisms Number of chemicals with data from the
public domain

Data source

Chemicals Data Target Species

127 IC50 M2 receptor rat

1,093 Ki M1 receptor human

1,020 Ki M2 receptor human

1,192 Ki M3 receptor human

594 Ki M1 receptor rat

411 Ki M2 receptor rat

214 Ki M3 receptor rat

550 Ki AChE human

407 Ki AChE eel

141 Ki BChE human

Sympatho-
mimetic

Activation of the adrenergic receptors and inhibition
of norepinephrine and dopamine re-uptake
transporters

261 EC50 α1A receptor human BindingDB

614 EC50 β1 receptor human

905 EC50 β2 receptor human

1,152 EC50 β3 receptor human

1,594 IC50 DAT transporter human

1,430 IC50 DAT transporter rat

503 IC50 NET transporter rat

Toxidrome Molecular mechanisms Number of chemicals with data from the public domain Data source

Anticoagulants There are multiple mechanisms that describe the
anticoagulant effect at different sites of the
coagulation cascade. Some anticoagulants act directly
by enzyme inhibition, while others act indirectly by
binding to antithrombin or by preventing their
synthesis in the liver

Six drugs known to slow down blood clotting https://www.drugs.com/
drug-class/anticoagulants.
html

Acute exposure Exposure to volatile organic solvents, inhalational
anesthetics, or sedative-hypnotic compounds can
lead to acute exposure toxidrome

Twenty chemicals known to cause acute exposure toxidrome https://chemm.hhs.gov/
sas.htm

Irritants/corrosive Irritant toxic chemicals cause reversible damage to
the skin and other organ systems. Corrosive toxic
chemicals cause irreversible damage to the
integumentary layers

Six chemicals known to cause irritant/corrosive toxidrome https://chemm.hhs.gov/
blisteragents.htm

Knockdown Chemically disrupts cellular energetics (e.g., prevents
intracellular oxygen utilization, causes anaerobic cell
metabolism and cell death), prevents red blood cells
from carrying or delivering oxygen to tissues and
cells, and causes loss of red blood cells and physical
oxygen deprivation

Six chemicals known to cause knockdown toxidrome https://chemm.hhs.gov/
bloodagents.htm

EC50, half-maximal effective concentration; Ki, binding affinity; IC50, half-maximal inhibitory concentration; AChE, acetylcholinesterase; BChE, butyrylcholinesterase.
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shown that this multi-task training technique leads to more robust
models, especially for tasks with limited data (Ramsundar et al.,
2017). In this study, we first evaluated the effectiveness of this
approach using the CMPNN method. We then applied this
technique using large chemical binding-affinity datasets as
auxiliary datasets to develop functional activity prediction models.

DNNs employ a large number of model parameters and a
stochastic training algorithm. As a result, we end up with a
different set of model parameters each time the networks are
trained. The ensemble learning technique trains an ensemble of
models and combines individual model predictions to generate an
ensemble prediction. The simplest way to do this is to take the
average of all the individual model predictions. In principle,
ensemble predictions are better in the sense that they reduce the
variance in individual model predictions. Additionally, as observed
in previous DNN studies with other deep learning methods,
ensemble predictions may be better than any individual model
prediction (Hansen and Salamon, 1990).

In this study, we evaluated the performance of CMPNN-based
ensemble learning and applied it to develop robust toxidrome models.
First, we evaluated the performance of single-task CMPNN and
ensemble models. For this, we used the mu receptor binding-affinity
data with nearly 4,831 chemicals—the largest dataset in this study—and
the kappa receptor activation data with 1,347 chemicals. We randomly
split each dataset into a 60% training set, a 20% validation set, and a 20%
test set. We used the training and validation sets to train an ensemble of
single-task CMPNN models, with the number of models ranging from
1 to 15. Each training ran 30 epochs, and the model parameters of the
epoch that gave the lowest root mean squared error (RMSE) of the
validation set were restored as the final trained model. We then
calculated the RMSE of the test sets using the ensemble models.
Next, we compared the single-task and multi-task CMPNN models.
For this, we first randomly split the datasets of multiple tasks of the
same toxidrome into 60% for training, 20% for validation, and 20% for
testing. We used the training and validation sets to train a multi-task
model and calculated the RMSE of the test sets using the multi-task
models. We then trained the corresponding single-task models using
the same training and validation sets and calculated the RMSE of the
test sets of the specific tasks. For these computations, we used ensemble
learning as described in the previous section.

Multiple ways exist to estimate prediction accuracies (Liu et al.,
2018a; Liu et al., 2019; Liu andWallqvist, 2019), but previous studies
have shown that the standard deviation of individual model
predictions is correlated with the reliability of an ensemble model

prediction (Tetko et al., 2008). In this study, we evaluated whether in
the CMPNNmethod, the standard deviation of the individual model
prediction also correlated with the prediction error. For this, we ran
a 5-fold cross validation for a multi-task model trained with the
opioid datasets (three opioid receptor subtype activation datasets
and three opioid receptor subtype binding-affinity datasets). In each
step of the 5-fold cross validation, we reserved 20% of the molecules
in the datasets as test molecules and made predictions for these test
molecules using models trained with data from the rest of the
molecules. In the end, we made ~15,000 predictions of the
receptor subtype activation and binding affinities. We also
calculated the standard deviations of the ensemble-model
predictions and the mean absolute errors of the ensemble
predictions. We binned the prediction errors using a
0.05 standard deviation interval and calculated an average of the
prediction errors in each bin. If we assume the midpoint of each bin
as the mean standard deviation of the bin, we used linear regression
to derive an equation relating the standard deviation (σ) and the
mean absolute error of prediction:

Mean absolute prediction error � 1.186 × σ + 0.252 (1)
We used Eq. 1 to estimate the mean prediction errors of our

ensemble predictions in this study.
We used the default hyperparameters in the CMPNN code as

they have been shown to be reasonable hyperparameters for most
molecular datasets (Song et al., 2020). We did not perform a
hyperparameter search for two reasons: 1) many of the individual
molecular activity datasets are too small for a reliable
hyperparameter search using a single dataset, and 2) our strategy
to train networks using small datasets is to use multi-task training, in
which a large part of the network architecture andmost of the model
parameters are shared across all the tasks. An optimal set of
hyperparameters for one dataset may be inferior for another
dataset, which renders an individual dataset-based
hyperparameter search futile for multi-task learning.

SEA for toxidromes without well-defined
molecular mechanisms or with an
insufficient number of chemicals for
deep learning

For the toxidromes that do not have well-defined molecular
mechanisms or have too few chemicals with experimental data,

FIGURE 2
(A) In single-task training, all model parameters in both the message passing network (MPN) and the feed-forward network (FFN) are trained by the
data from a single task. (B) In multi-task training, a portion of the network and parameters are shared and trained using the datasets from all tasks.
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it is challenging to develop machine-learning models based on
assay data alone. Therefore, we used the SEA to develop a
computational tool for rapid screening of chemicals for these
toxidromes. The SEA was developed to assess the relatedness
between two drug receptors A and B based on an overall
molecular structural similarity score between all the ligands
of the two receptors (Keiser et al., 2007; Schyman et al., 2016). It
is based on the Tanimoto similarity approach (TSA), but unlike
TSA that assesses the similarity between two molecules only,
SEA assesses the overall similarity between two groups of
molecules. In the application of SEA in this study, we based
our predictions on the overall similarity between a molecule
and a group of molecules known to cause a toxidrome (see Eqs
2–4). Briefly, the raw similarity score between the query
molecule and the set of compounds (m) known to cause a
toxidrome is calculated using a raw similarity score RS using
Tanimoto similarity (TS) as

RS � ∑
m

1

TSm ∀TSi ≥TS0 (2)

where TS0 is a minimum threshold similarity set to 0.57. The z-score
for a query molecule is calculated as

z � RS- μ m( )
σ m( ) (3)

where μ(m) = 4.24·10−4 m and σ(m) = 4.49·10−3 m0.665 and converted
into a p-value as

p z( ) � 1- exp -e-
zπ�

6
√ - Γ′ 1( )( ) (4)

where Γ’(1) is 0.577215665.
To assess the feasibility and compare the performance of SEA

versus TSA for our purpose, we used the St. Jude malaria high-
throughput screening (HTS) dataset (Guiguemde et al., 2010),
which contains a library of 305 K screened compounds with
1,524 active compounds identified. In our evaluation of the
TSA and SEA methods, we first randomly selected 153 (10%)
of the active compounds as “known” actives and embedded the
remaining actives (1,371) in the rest of the 305 K compounds.
Next, we ranked the 305 K compounds based on their highest

FIGURE 3
Plots of the root mean squared error (RMSE) of ensemble predictions vs. the number of models in the ensemble. (A) Results from human mu
receptor binding affinity models. (B) Results from human kappa receptor activation models. Both plots show that ensemble learning (number of
models >1) performs better than single-model learning (number of models = 1). We chose to use 10 models in our ensemble learning as the plots show
that the RMSE decreased and fluctuated in a narrow range when the number of models approached 10 or more.

TABLE 2 Root mean squared errors (RMSE) of single- and multi-task ensemble communicative message passing neural network (CMPNN) predictions for
the opioid datasets, showing improved (lower RMSE) performance of multi-task training.

Receptor Organism Assay Compounds Model RMSE

Multi-task Single-task

Mu Human Activation 1,272 pEC50 0.69 0.71

Delta Human Activation 796 pEC50 0.70 0.74

Kappa Human Activation 1,347 pEC50 0.74 0.77

Mu Human Binding 4,831 pKi 0.79 0.87

Delta Human Binding 3,290 pKi 0.79 0.81

Kappa Human Binding 3,497 pKi 0.84 0.86

EC50, half-maximal effective concentration; Ki, binding affinity.
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Tanimoto similarity value to the “known” actives (TSA
method) and on their lowest p-values (SEA method). We then
checked the percentages of the remaining actives in increasing
fractions of the highest ranked screening library with both
methods and calculated the active retrieval efficiency as
defined by Eq. 5:

Active retrieval efficiency � %actives retrieved

%highest ranked samples screened

(5)
Finally, to test the resilience of the methods to false

actives, we randomly picked 45 inactive compounds from the
screening library and combined them with the 153 “known”
actives as false positives and repeated the TSA and SEA
calculations.

Toxidrome web application

The toxidrome web application runs on an Apache Tomcat
server and utilizes a three-tiered architecture consisting of a front-
end, a database, and a controller. For the front-end, we used Flutter
(https://docs.flutter.dev/) to provide user input, information, and
graphics. The database is a standard PostgreSQL relational database
that stores compounds provided by the user as well as all calculated
models results. This information is stored for 2 weeks, at which
point it is deleted from the database. None of the stored information
is used to train new models or collect user data. The Java-based
controller works to pass the information between the front-end and
the database. The controller is also responsible for executing a
Python-based command-line tool that runs both the CMPNN
model and the SEA for the toxidromes.

TABLE 3 Root mean squared errors (RMSE) of single-task and multi-task ensemble communicative message passing neural network (CMPNN) predictions
for the convulsant toxidrome datasets, showing improved (lower RMSE) performance of multi-task training.

Receptor Organism Assay Compounds Model RMSE

Multi-task Single-task

GABA α1β2γ2 Human Inhibition 66 pIC50 0.93 1.13

GluN ε2ζ1 Rat Activation 82 pEC50 0.41 0.86

GlyT2 Human Activation 90 pEC50 0.34 0.36

GluA Human Activation 90 pEC50 0.63 1.16

GluN ε3ζ1 Rat Activation 169 pEC50 0.41 0.59

GlyT1 Human Activation 283 pEC50 0.76 0.83

GABA α1β3γ2 Human Binding 578 pKi 0.70 0.73

GABA α3β3γ2 Human Binding 619 pKi 0.71 0.79

GABA α5β3γ2 Human Binding 626 pKi 0.63 0.79

GABA α2β3γ2 Human Binding 727 pKi 0.78 0.85

IC50, half-maximal inhibitory concentration; EC50, half-maximal effective concentration; Ki, binding affinity.

TABLE 4 Number of predictions in each standard deviation (σ) bin and the mean absolute errors of multi-task ensemble communicative message passing
neural network (CMPNN) models for the opioid toxidrome.

σ bin Predictions Mean error in pEC50 and pKi Distance to Experimental EC50 (within a factor of)

σ < 0.10 397 0.34 2.2

0.10 ≤ σ < 0.15 2,052 0.38 2.4

0.15 ≤ σ < 0.20 3,218 0.45 2.8

0.20 ≤ σ < 0.25 3,071 0.51 3.2

0.25 ≤ σ < 0.30 2,333 0.58 3.8

0.30 ≤ σ < 0.35 1,524 0.63 4.3

0.35 ≤ σ < 0.40 1,015 0.71 5.1

0.40 ≤ σ < 0.45 566 0.76 5.8

0.45 ≤ σ < 0.50 322 0.82 6.6

σ > 0.50 409 0.88 7.6

EC50, half-maximal effective concentration; Ki, binding affinity.
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Software availability

We trained and validated the CMPNN models using the Python
code that is freely available for download on the GitHub website
(https://github.com/SY575/CMPNN). To calculate the standard

deviations for an ensemble of CMPNN model predictions, which
are needed for estimating the mean absolute prediction errors, we
modified a function of the Python code named make_predictions.py in
the/chemprop/folder in the installation directory. Our modified make_
predictions.py code is given in the Supplementary Material for anyone
interested in reproducing our studies. All the models developed in this
work as well as the raw data and codes used for the command-line tool
are available at https://github.com/BHSAI/Toxidrome. We developed
an easy-to-use, publicly accessible, web user interface that allows users
to submit their query compounds and make toxidrome predictions
using our models (available at https://toxidrome.bhsai.org/).

Results

The primary goal of this work was to develop a tool to predict the
potential of a chemical to cause specific toxidromes. For this purpose,
we chose to use the recently reported CMPNN approach for molecular
property prediction. Song et al. (2020), the developers of this approach,
performed a comparative analysis with othermethods and reported that
CMPNN performed better than the other methods.

Performance of a CMPNN single model
versus an ensemble of models

Previous studies using DNN methods have shown that ensemble-
model predictions perform better than single-model predictions
(Hansen and Salamon, 1990). We assessed if this was also true with
CMPNNs using the mu receptor binding-affinity data—the largest
dataset in this study—and the kappa receptor activation data. Figure 3
shows the plots of RMSE versus the number of models in the ensemble
models, indicating that the RMSE of a single model was the highest.
With an increasing number of models, the RMSE decreased and
fluctuated in a narrow range when the number of models
approached 10 or more. Based on this observation, we used
ensemble models incorporating 10 models in the rest of our study.

Single-task versus multi-task training

Using the classic multi-layer perceptron (fully connected feed-
forward DNNs), Sadawi et al. (2019) have shown that multi-task
training results in better models than single-task models in most
cases, especially for tasks with limited training data. Thus, we
explored whether multi-task training would be a viable approach for
us to mitigate against small datasets for training CMPNN models.
Before adopting this approach, we assessed the performance of
CMPNN-based single- and multi-task training. Table 2 summarizes
the results of our evaluation using the opioid toxidrome datasets, and
Table 3 summarizes the results using the convulsant toxidrome datasets.
The results using each of the datasets showed that the RMSEs of the
multi-task models were smaller than or similar to those of the single-
task models (22% and 4% RMSE reduction for the convulsant and
opioid datasets, respectively). In addition, for tasks with a small number
of training compounds (<100), the RMSEs of the multi-task models
were significantly smaller than those of the single-taskmodels (34% and
13% RMSE reduction for the convulsant datasets). However, the multi-

FIGURE 4
Mean absolute error of predictions as a function of the standard
deviation of the ensemble prediction. The graph shows a clear linear
correlation between the error and the standard deviations of the
ensemble predictions that is used to make estimates of the
prediction accuracies.

FIGURE 5
Active-compound retrieval efficiencies determined using the
Tanimoto similarity approach (TSA) and the similarity ensemble
approach (SEA), with and without false positives (noise) among the
“known” actives. The active retrieval efficiency is defined as the
fraction of actives retrieved (number of actives retrieved/total actives)
divided by the fraction of the library screened (number of chemicals
screened/total number of chemicals in the library). Because the
fraction of the library screened is small, and both TSA and SEA enrich
actives among the top-ranked samples, the active retrieval efficiency
can exceed 100%. To generate the data, we used 153 (10%)
compounds randomly chosen from the actives identified in the St.
Jude malaria high-throughput screening campaign as “known”
actives, with and without 45 randomly selected inactive compounds
as false positives (30% noise). The remainder of the actives (90%) were
embedded into the screening library of ~305 K compounds. We used
the TSA and SEA methods to rank the compounds in the screening
library and evaluated the active retrieval efficiencies in increasing
fractions of the ranked screening library. The data show that when a
small fraction of the library is screened, the performance of SEA is
better than for TSA, with or without randomly selected false
positives (noise).
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task RMSEs of the binding-affinity datasets, which contain significantly
more compounds, were relatively closer to those of the corresponding
single-task models (10% versus 20% closer). As we based the toxidrome
prediction on functional potencies of the chemicals, we included the
binding-affinity data as auxiliary datasets in the multi-task training to
create robust functional activity models.

Estimating prediction reliability

Previous studies using associated artificial neural networks have
reported that the standard deviation of all individual model predictions

from an ensemble of models correlates with the prediction error,
therefore, the magnitude of the standard deviation can serve as a
domain applicability measure (Tetko et al., 2008). In this study, we
observed that with the CMPNN method, the standard deviation of the
individual model prediction also correlated with the prediction error.
Table 4 and Figure 4 show a correlation between the standard deviation
and the mean absolute error of predictions: the larger the standard
deviation, the larger the mean prediction error.

Distance to model approaches that use the standard deviation of
an ensemble of classifiers are widely used to define applicability
domain (Tetko et al., 2008; Mathea et al., 2016). Here, we used the
standard deviation of predictions given by an ensemble of models as

FIGURE 6
Login page for the web-based user interface (https://toxidrome.bhsai.org/). The system supports registration of users as well as limited guest
accounts to explore the system.

FIGURE 7
Job submission control page. Compounds can be uploaded from cvs-separated lists of SMILES or drawn using a chemical drawing tool to generate
any desired compound structure.
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an applicability domain measure. In the toxidrome web tool, any
prediction with a standard deviation less than one is considered to be
within the applicability domain of the model. In the similarity
ensemble models, any prediction with a p-value less than 0.05 is
considered to be within the applicability domain.

Use of the similarity ensemble approach

The TSA is commonly used in selecting compounds from a
large compound library for bioactivity testing. Starting with
compounds with a desirable activity at a drug target, the TSA
selects other compounds with a high molecular structural
similarity and considers them active based on their similar
structure using the similar activity principle. However, the
TSA has a potential caveat, i.e., it is based on individual
Tanimoto similarity between a library compound and an
active compound, not the overall similarity between a library
compound and all active compounds. The SEA is based on the
overall similarity between two sets of compounds and, therefore,
should perform better than the TSA as there could be false
positives in any active compound set. We compared SEA and
TSA approaches using the St. Jude malaria HTS dataset.

Figure 5 shows the results of this computational experiment,
illustrating that if a large fraction (>5%) of the compound library
was screened, the performances of the TSA and SEA were essentially
the same. However, when a very small fraction of the huge library
(>300 K compounds) was screened, SEA performed significantly
better than TSA, especially when there were false actives in the
“known” active set of compounds. Contrary to TSA, which is very
sensitive to false actives, SEA is surprisingly insensitive to random

false actives because structurally dissimilar false actives do not
change SEA p-values. Our results indicate that SEA performed
better than TSA for molecular structural similarity-based
active retrieval.

Web interface to the toxidrome
screening tools

The aim of our study was to create a publicly accessible
computational toolset for rapid screening of chemicals with
potential to cause toxidromes. Hence, we created a web-based
user interface that allows access to the deep learning models and
SEA-based screening tools as a means to rapidly identify chemicals
with toxidrome-causing potential.

Figure 6 shows the login page where the user is given the option
of creating a new account, logging in to an existing account, or
logging in to a guest account. Once logged in, the user will be
brought to a home page (Figure 7), where they can create a new job
or review the results of a previously submitted job. If submitting a
new job, the user will be able to give the job a name and description
as well as input a list of compounds in the simplified molecular-
input line-entry system (SMILES) format. The SMILES can be
pasted directly into the browser or uploaded via a csv file. The
user can also draw molecular structures as input to the application
using the Marvin chemical drawing tool (Chemaxon, Boston, MA).
After a job is submitted, it will be queued for processing, and once
the results are ready, the user can view them by clicking the “View
Results” button beside the job. The results can be viewed and
downloaded for 2 weeks, after which they will be removed from
the database.

FIGURE 8
Toxidrome overall results page for a series of compounds displaying input structures and names and color-coded assessments of the likelihood of
each chemical to cause a particular toxidrome. The results can be downloaded and stored by the user.
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Clicking the “View Results” button will bring the user to the
results page (Figure 8), which gives an overview of each compound
and its toxidrome-causing potential. To visualize the potential of a
chemical to cause a toxidrome, we first determined a 60% and 80%
potency threshold from the distribution of experimental potency
values. Then, when a chemical is predicted to be more potent than
the 80% threshold, it is considered highly likely (color red) to cause
the toxidrome; between the 60% and the 80% thresholds, it is
predicted to be likely (color yellow); and for values below that it
is predicted to be unlikely (color green). For the SEA prediction, we

call a toxidrome if the p-value is less than 0.05 and color the
corresponding cell red, otherwise, we color it green.

To view the individual values calculated by the models, the user can
either hover over a cell in the table (which will display values in a
column on the right), download the complete set of data in csv format
via the button at the top of the page, or click on the compound theywish
to view, which will bring them to the compound page (Figure 9). The
compound page displays an image of the structure, a rose plot
summarizing toxidrome predictions, and a table listing the predicted
values and estimated prediction errors associated with each receptor.

FIGURE 9
Detailed model break-down results for an individual chemical displaying each underlying target/receptor, activity types, species, and estimated risks
based on the predicted values. An estimated 95% error is also shown.
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As the CMPNN code was written to run on graphics processing
units (GPUs) and at times GPU resource may be limited, we also
created corresponding DMPNN models. Thus, depending on the
GPU loads, some of the outputs may be based on DMPNN model
predictions.

Summary

Our objective of this study was to create a publicly accessible
computational toolset for rapid in silico identification of chemicals
with potential to cause toxidromes. Toward this aim, we evaluated
the performance of the current state-of-the-art deep learning
method—the CMPNN—for its ability to help mitigate the
challenge of small datasets for deep learning. Our results
indicated that multi-task training, a technique with potential to
mitigate the small dataset challenge using conventional DNNs,
worked equally well with the recently developed CMPNN. We
also showed that CMPNN-based ensemble learning resulted in
more reliable predictions than those given by any single CMPNN
model. In addition, we showed that the standard deviation of
individual model predictions from an ensemble of CMPNN
models correlated with the error of ensemble model predictions
and can be used to estimate the reliability of ensemble predictions.
For toxidromes that do not have well-defined molecular
mechanisms or sufficient data to train deep learning models, we
used the similarity ensemble approach instead of the common
Tanimoto similarity approach to develop computational tools for
rapid identification of chemicals with potential to cause these
toxidromes. We made these resources publicly available via a
web-user interface to facilitate future studies on chemical toxicity.
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