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Summary

Sleep loss impairs cognition; however, individuals differ in their response to sleep

loss. Current methods to identify an individual's vulnerability to sleep loss involve

time-consuming sleep-loss challenges and neurobehavioural tests. Here, we sought

to identify electroencephalographic markers of sleep-loss vulnerability obtained from

routine night sleep. We retrospectively analysed four studies in which 50 healthy

young adults (21 women) completed a laboratory baseline-sleep phase followed by a

sleep-loss challenge. After classifying subjects as resilient or vulnerable to sleep loss,

we extracted three electroencephalographic features from four channels during the

baseline nights, evaluated the discriminatory power of these features using the first

two studies (discovery), and assessed reproducibility of the results using the remain-

ing two studies (reproducibility). In the discovery analysis, we found that, compared

to resilient subjects, vulnerable subjects exhibited: (1) higher slow-wave activity

power in channel O1 (p < 0.0042, corrected for multiple comparisons) and in chan-

nels O2 and C3 (p < 0.05, uncorrected); (2) higher slow-wave activity rise rate in

channels O1 and O2 (p < 0.05, uncorrected); and (3) lower sleep spindle frequency in

channels C3 and C4 (p < 0.05, uncorrected). Our reproducibility analysis confirmed

the discovery results on slow-wave activity power and slow-wave activity rise rate,

and for these two electroencephalographic features we observed consistent group-

difference trends across all four channels in both analyses. The higher slow-wave

activity power and slow-wave activity rise rate in vulnerable individuals suggest that

they have a persistently higher sleep pressure under normal rested conditions.

K E YWORD S

electroencephalography, resilient, sleep loss, sleep pressure, sleep spindles, slow-wave activity,
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1 | INTRODUCTION

Sleep is essential for health and normal brain function (Irwin, 2015).

Yet, a substantial proportion of the general population and active-duty

Service members of the United States Armed Forces are chronically

sleep deprived (Chattu et al., 2019; Good et al., 2020), resulting in

impairment of cognitive functions, including attention, working mem-

ory, and decision making (Lo et al., 2012). Sleep loss does not affect
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all individuals equally, as some individuals are resilient while others

are vulnerable to its detrimental effects. This inter-individual variabil-

ity in vulnerability to sleep loss is a trait-like characteristic, remaining

consistent during repeated exposures to sleep deprivation (Rupp

et al., 2012; Tkachenko & Dinges, 2018; Van Dongen et al., 2004).

Given that forgoing sleep is often unavoidable, proper identification

of an individual's vulnerability trait to sleep loss could help in

assigning the appropriate personnel to tasks requiring sustained

vigilance and in developing suitable personalised sleep-loss coun-

termeasures (Vital-Lopez et al., 2023). However, identifying vulner-

ability traits to sleep loss often requires that individuals be

evaluated during a sleep-loss challenge, which is time consuming,

labour intensive, and not scalable. Thus, we aimed to identify

potential markers of vulnerability to sleep loss that do not require

sleep deprivation or behavioural tests.

Previous studies have found that, under well-rested wakefulness

following one or more nights of baseline sleep, resilient and vulnerable

groups differ in brain activation level (Caldwell et al., 2005; Chee

et al., 2006; Mu et al., 2005), structural (Cui et al., 2015; Rocklage

et al., 2009) and functional connectivity (Yeo et al., 2015), psychomo-

tor vigilance test (PVT) performance (Chua et al., 2014; Chua

et al., 2019), heart rate and its variability (Chua et al., 2014), cardiovas-

cular haemodynamic measures (Yamazaki et al., 2021), and electroen-

cephalographic (EEG) spectral power in the high-theta frequency band

(Chua et al., 2014). While these studies offer promising ways to iden-

tify vulnerability to sleep loss, they have limitations with regard to

robustness and generalisability, because their results were: (1) based

mostly (Chua et al., 2014) or exclusively (Mu et al., 2005) on men, with

one study identifying a subset of subjects as men but providing no sex

information for the remaining subjects (Caldwell et al., 2005); (2) not

corrected for multiple comparisons even though multiple metrics were

analysed in the same dataset (Chua et al., 2014; Yamazaki

et al., 2021); (3) not re-assessed for reproducibility using an indepen-

dent dataset (Caldwell et al., 2005; Chua et al., 2014; Chua

et al., 2019; Cui et al., 2015; Mu et al., 2005; Rocklage et al., 2009;

Yamazaki et al., 2021; Yeo et al., 2015); or (4) not replicated when

assessed in a follow-up study (Chee et al., 2006; Lim et al., 2007). In

addition, with the exception of functional brain connectivity (Yeo

et al., 2015), all metrics examined in these studies (Caldwell

et al., 2005; Chee et al., 2006; Chua et al., 2014; Cui et al., 2015; Mu

et al., 2005; Rocklage et al., 2009) were based on cognitive neurobe-

havioural tasks, which depend on the subject's level of effort. To over-

come these limitations, we aimed to identify vulnerability markers

that are reproducible and independent of a subject's level of effort

(i.e., do not require a neurobehavioural test). To this end, we sought

markers of vulnerability to sleep loss using EEG data collected during

routine nights of sleep and set aside studies not used for marker dis-

covery to independently assess reproducibility of the markers. Obtain-

ing markers from EEG data collected during routine sleep, as opposed

to during wakefulness, has the advantage of minimal interference

from endogenous factors (attention and motivation) and exogenous

influences (environment) (Kitsune et al., 2015). Given that EEG signal

properties have trait-like stability over time (Buckelmüller et al., 2006;

Tan et al., 2000), they are suitable candidate markers for characteris-

ing vulnerability to sleep loss.

Although sleep pressure that accumulates as a function of wake-

fulness is known to affect cognitive performance in a dose-dependent

manner (Van Dongen et al., 2003), the possibility that resilient and

vulnerable groups may experience different levels of sleep pressure

under baseline (non-sleep deprived) conditions has not been exam-

ined. To this end, we examined EEG features that are linked to sleep

pressure. Slow-wave activity (SWA) spectral power during non-rapid-

eye-movement (NREM) sleep and the rate at which it increases during

the initial 20 min of sleep have been shown to be indicative of sleep

pressure (Brunner et al., 1993; Dijk et al., 1990). Sleep spindles, tran-

sient EEG signal oscillations (11–15 Hz) lasting 0.5–2.0 s that are gen-

erated from thalamocortical interactions, reflect the efficiency and

integrity of the thalamocortical network (Andrillon et al., 2011), which

is involved in regulating sleep and arousal (McCormick & Bal, 1997). In

addition, sleep spindle activity has been consistently associated with

cognitive and memory-related abilities (Schabus et al., 2006), and

there is an inverse relationship between sleep pressure and sleep

spindle frequency (Knoblauch et al., 2003). These lines of evidence led

us to hypothesise that resilient and vulnerable individuals differ in:

(1) SWA power during the N2 and N3 NREM sleep stages of the first

sleep cycle; (2) SWA rise rate during the first 20 min of sleep; and

(3) sleep spindle frequency computed during the N2 and N3 stages

for the entire night.

Therefore, the objective of our study was to determine whether

we could discriminate between individuals who are resilient to sleep

loss and those who are vulnerable using these EEG features measured

during routine nights of sleep. To this end, we used EEG data

recorded during baseline nights of sleep from four independent sleep-

loss studies. To assess reproducibility of our findings, we used data

from 26 subjects (13 resilient and 13 vulnerable) from two of four

studies for initial marker discovery and data from 24 subjects (12 resil-

ient and 12 vulnerable) from the remaining two studies for reproduc-

ibility analysis.

2 | METHODS

2.1 | Study design

Our dataset consisted of four previously published sleep-loss labora-

tory studies (Doty et al., 2017; Hansen et al., 2019; Reifman

et al., 2019; Rupp et al., 2012) involving 50 healthy young adults

(21 women) aged between 18 and 39 years (Table 1). In these studies,

subjects slept in the laboratory for 1–7 baseline nights (8–10 h time in

bed [TIB]), during which we recorded polysomnography (PSG) data,

and subsequently challenged them with either total sleep deprivation

(TSD; 48, 62, or 63 h) (Hansen et al., 2019; Reifman et al., 2019; Rupp

et al., 2012) or chronic sleep restriction (CSR; 5 nights of 5 h TIB or

7 nights of 3 h TIB) (Doty et al., 2017; Rupp et al., 2012) (Table 1) fol-

lowed by a recovery phase (1 or 3 nights of 8, 10, or 12 h TIB). Sub-

jects performed PVTs (5-min PVT for Study D2 and 10-min PVT for
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studies D1, R1, and R2) during scheduled wakefulness every 1–3 h

starting immediately after the baseline-sleep phase, through the

sleep-loss challenge, and until the end of the recovery phase. We used

two (studies D1 and D2) of the four studies for EEG marker discov-

ery and the remaining two studies (R1 and R2) for reproducibility

analysis, where we assessed whether we could independently con-

firm our findings. To reduce variability and minimise the ‘first-
night’ effect (Agnew et al., 1966), for subjects for whom we had

PSG recordings from multiple nights of baseline sleep, we selected

the first and last nights and averaged EEG-based measures (EEG

features and sleep-architecture measures) of the 2 nights. For the

cross-over study D1, which had 1 baseline night with PSG record-

ings prior to the TSD and CSR phases, for each subject, we aver-

aged the EEG-based measures computed from the baseline night of

each of the two study phases.

2.2 | Subject classification

To classify subjects of each study into resilient and vulnerable groups,

for each subject, we first normalised the PVT reaction times

obtained during the sleep-loss period. To this end, separately for

the baseline wake period (i.e., the first 14 or 16 h immediately fol-

lowing the baseline sleep) and the sleep-loss period, we obtained

the mean reaction times. Then, we divided the mean reaction time

of the sleep-loss period by that of the baseline period and multi-

plied the result by 100 to obtain the normalised reaction time (one

value per subject). For the cross-over study D1, consisting of TSD

and CSR challenges, we separately normalised the reaction times

for each subject for each of the two phases of the study resulting

in two values that we averaged to obtain a single normalised reac-

tion time per subject. Finally, within each study, we rank ordered

the subjects by their average normalised reaction times and labelled

the lower third as ‘resilient’ (25 subjects), the upper third as

‘vulnerable’ (25 subjects), and the middle third as ‘intermediate’
(25 subjects) (Figures S1–S5).

2.3 | Sleep EEG data and preprocessing

The sampling rates of the EEG data for the four studies (D1, D2, R1,

and R2) were 100 Hz, 256 Hz, 500 Hz, and 200 Hz, respectively. For

studies D2, R1, and R2, we down-sampled the data to 128 Hz (D2) or

100 Hz (R1 and R2). As one of the two studies in the discovery set did

not record frontal EEG channels, we did not include these channels in

our analyses and only analysed the central and occipital channels (C3,

C4, O1, and O2 referenced to the contralateral mastoids) that were

common to all four studies. We high-pass filtered the data (6-dB cut-

off frequency at 0.125 Hz) to remove slow drifts and segmented the

data from each channel into 5-s epochs. We excluded from the analy-

sis epochs in which we detected electrical or physiological artefacts

(see Supplemental Materials).

2.4 | Sleep-architecture measures

We scored sleep stages in 30-s epochs following the guidelines of the

American Academy of Sleep Medicine (Silber et al., 2007). Table 2 shows

the sleep-architecture measures computed as described previously

(Muzet et al., 2016), except that we obtained rapid-eye-movement

(REM) sleep stages by joining REM sleep periods separated by <15 min

and defined the number of awakenings as the number of contiguous

awake periods lasting ≥30 s between sleep onset (time of first occur-

rence of any one stage: N1, N2, N3, or REM) and lights-on time. As sleep

architecture changes with age (Ohayon et al., 2004), when performing

statistical comparisons between the resilient and vulnerable groups, we

age-corrected all sleep-architecture measures using a regression

approach, as described previously (Wang et al., 2020).

TABLE 1 Description of the four studies used to identify and independently assess discriminative electroencephalographic markers of
vulnerability to sleep loss.

Study
Baseline
nights, n

Baseline nights
with PSG data, n

TIB during
baseline
nights, h

Sleep-loss
protocol

Number of subjects

(women) Age, years, mean (SD)

R V R V

D1a 7 1 10 63 h TSD and 3 h TIB � 7 days 6 (3) 6 (3) 28.3 (4.5) 29.7 (6.3)

D2 1 1 8 62 h TSD 7 (2) 7 (1) 26.6 (4.5) 23.9 (3.8)

R1 5 5 10 5 h TIB � 5 days 8 (5) 8 (3) 22.2 (2.8) 27.6 (2.4)

R2 3 3 10 48 h TSD 4 (1) 4 (3) 24.8 (5.0) 31.8 (5.2)

D1 + D2 13 (5) 13 (4) 27.4 (4.4) 26.5 (5.7)

R1 + R2 12 (6) 12 (6) 23.1 (3.7) 29.0 (3.9)

All 25 (11) 25 (10) 25.3 (4.5) 27.7 (5.0)

Note: studies D1 (Rupp et al., 2012) and D2 (Reifman et al., 2019) used for feature discovery; studies R1 (Doty et al., 2017) and R2 (Hansen et al., 2019)

used for reproducibility analysis.

Abbreviations: PSG, polysomnography; R, resilient subject group; SD, standard deviation; TIB, time in bed; TSD, total sleep deprivation; V, vulnerable

subject group.
aCross-over study design with a gap of 2–4 weeks between 63 h TSD and 3 h TIB � 7 days.
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2.5 | The EEG features

We extracted the following three EEG features: (1) SWA power,

defined as the mean power spectral density in the frequency range of

0.2–4.0 Hz; (2) SWA rise rate, defined as the rate at which SWA

power changes during the first 20 min after sleep onset; and (3) sleep

spindle frequency, defined as the frequency of sinusoidal oscillations

within individual sleep spindles.

To compute the SWA power for a given EEG channel, we

obtained periodogram power spectral density estimates for

artefact-free epochs within the N2 and N3 stages of the first sleep

cycle, averaged the power spectral density within the frequency band

of 0.2–4.0 Hz for each epoch, and averaged the SWA power across all

epochs. The epoch-averaged SWA power was then log (base 10)

transformed. To obtain the SWA rise rate, we fitted a robust linear

regression to the SWA power data for epochs within the N1, N2, or

N3 stages of the first 20 min of sleep. When computing the SWA

power and the SWA rise rate, we required that subjects had at least

one baseline night with a minimum of 30 min (cumulative) of

artefact-free, N2 or N3 stage data in the first sleep cycle. Applying

this criterion, we excluded one vulnerable subject from Study D2 from

analyses involving SWA power and SWA rise rate. Finally, we

detected sleep spindles within the frequency band of 11–15 Hz by an

automated algorithm as described previously (Schabus et al., 2007),

computed the period of oscillations within each detected spindle,

obtained the spindle frequencies by taking the reciprocal of the mean

period of oscillations within each spindle, and averaged the spindle

frequencies across all spindles falling within the N2 and N3 stages

over the entire night. For a few subjects (depending on the channel,

two–four resilient and two–four vulnerable from D1, one resilient

from R1, and one vulnerable from R2), we only used data from 1 of

the 2 nights because the other night did not meet the quality criterion.

Given that age is known to have an effect on sleep EEG features

(Sprecher et al., 2016), we corrected the computed features using a

regression model, as previously described (Wang et al., 2020).

In our dataset, the raw EEG feature values of a given subject

group (resilient or vulnerable) varied across the studies for a given

EEG channel likely due to study-to-study differences in recording

setup, and across the channels within a given study due to recording-

site differences. This variability prevented us from directly associating

raw EEG feature values with sleep-loss vulnerability and from pooling

them across studies. Hence, we performed within-study z-scoring nor-

malisation that brought feature values from different studies and chan-

nels into a common scale, allowing us to pool studies together.

Specifically, within a given study (D1, D2, R1, or R2), for each EEG chan-

nel, we z-scored the feature values of resilient and vulnerable subjects

together, using the mean and standard deviation (SD) computed from

the combined pool of subjects from both groups. Then, we pooled the

z-scored feature values of the resilient subjects of studies D1 and D2

together to form the discovery set and those of studies R1 and R2 to

form the reproducibility set; for the combined set, we pooled together

the resilient subjects from all four studies. We repeated the same proce-

dure to obtain the z-scored feature values for the vulnerable group.

2.6 | Secondary analyses

To examine the association between EEG-feature values and sleep-

loss vulnerability, for each EEG channel, we regressed age-corrected

EEG-feature values (from the resilient, intermediate, and vulnerable

groups pooled together) against the normalised PVT reaction times.

Accordingly, we pooled the studies together and applied multiple lin-

ear regression with a common slope, while allowing for study-specific

intercepts to account for study-to-study variations.

To assess whether the discriminatory information of the SWA

power came from the periodic or aperiodic component of the EEG-

signal power spectrum (Buzsáki et al., 2012; He et al., 2010), we

extracted each component as previously described (Wen & Liu, 2016)

and analysed them separately. Specifically, for each EEG channel, we

first extracted the periodic and aperiodic components from individual

artefact-free 5-s epochs from stages N2 and N3 of the first sleep

cycle. Next, we separately averaged the periodic component of each

frequency bin over all epochs and repeated the same procedure for

the aperiodic component. Then, we obtained the total power for three

frequency bands (0.2–4.0, 4.0–7.5, and 0.1–25.0 Hz) by integrating

the power spectral densities across the corresponding frequency

range. Finally, we log-transformed the total power.

In addition to sleep spindle frequency, we also assessed whether

sleep spindle amplitude or sleep spindle density could discriminate

resilient and vulnerable subjects. After extracting sleep spindles, as

described above in EEG features, we computed spindle density

(counts/min) by dividing the total number of spindles within artefact-

free periods in stages N2 and N3 over the entire night by the corre-

sponding sleep duration. To compute spindle amplitude, we desig-

nated the largest peak-to-trough distance within a given spindle as its

amplitude and averaged it across the spindles.

We age-corrected, z-score transformed, and pooled these addi-

tional EEG features from the secondary analysis across baseline nights

and studies as described above in EEG features.

2.7 | Statistical analysis

For each EEG feature, subject characteristic, and sleep-architecture

measure, we tested for significant statistical differences between the

resilient and vulnerable groups using the non-parametric Wilcoxon's

rank-sum test using the MATLAB Statistics toolbox. When assessing

the statistical significance of group differences in EEG features in our

primary analysis (SWA power, SWA rise rate, and spindle frequency),

we conservatively accounted for multiple comparisons across the four

electrodes and three EEG features by performing our statistical tests

with an adjusted false-positive error rate of 0.0042, obtained by divid-

ing the conventional false-positive error rate threshold of 0.05 by

12 (three features � four electrodes). For the secondary analysis (peri-

odic SWA, aperiodic SWA, aperiodic broadband [0.1–25.0 Hz], spindle

amplitude, and spindle density), we applied a false-positive error rate

threshold of 0.0025, accounting for 20 comparisons (five

features � four electrodes). Using a previously published MATLAB

SUBRAMANIYAN ET AL. 5 of 16
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package (Hentschke & Stüttgen, 2011), we computed effect sizes

using the bias-corrected Cohen's d measure and obtained 95% confi-

dence intervals (CIs) via bootstrap of 5000 replicates.

2.8 | Evaluation of reproducibility

We assessed whether the results obtained in the discovery set were

confirmed in the reproducibility set using a combination of three sta-

tistical metrics because no single metric can comprehensively capture

reproducibility (OpenScienceCollaboration, 2015). We assessed

whether: (1) the group differences observed in the discovery

set remained statistically significant (p < 0.0042) in the reproduc-

ibility set and whether the group differences were in the same

direction as in the original finding; (2) the effect size computed in

the reproducibility set fell within the 95% CI of the effect size in

the discovery set; and (3) after we pooled the discovery and repro-

ducibility sets into a ‘combined’ set, the group differences in the

combined set remained statistically significant and the effect-size

95% CI excluded zero.

F IGURE 1 Group differences and their effect sizes for slow-wave activity (SWA) power. (a) Electroencephalogram (EEG) channel locations on
the scalp. (b) Mean power spectral density computed from occipital channel O1 for the discovery set (solid line and shading indicate mean ± one
standard error). Dotted vertical lines mark the boundary of the SWA frequency band (0.2–4.0 Hz). (c) Z-scored SWA power group differences for
each of the four EEG channels based on the discovery, reproducibility, and combined sets. Error bar indicates one standard error. Asterisk (*)
indicates p < 0.05 uncorrected for multiple comparisons and dagger (†) indicates p < 0.0042 corrected for multiple comparisons. (d) Effect size of
SWA power for each of the four EEG channels based on the discovery, reproducibility, and combined sets. Positive values indicate that SWA
power was higher in the vulnerable group when compared to the resilient group. Error bar indicates 95% confidence interval of the effect size.
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3 | RESULTS

3.1 | Subject characteristics and sleep-architecture
parameters

There was no significant age difference between the resilient and the

vulnerable groups (Table 1) in either the discovery set (p = 0.439) or the

combined set (p = 0.104); however, in the reproducibility set, there was

a significant age difference (p = 0.003) between the two groups. Table 2

summarises the sleep-architecture parameters computed based on sleep

scoring of the EEG data. For all three study sets (discovery, replication,

and combined), most of the sleep parameters did not show a significant

group difference. However, we found a significant group difference in

the average percentage of sleep time in the N2 stage in the discovery

set (p = 0.027), in the average percentage of sleep time in the N1 stage

in the reproducibility set (p = 0.030), and in the average percentage of

sleep time in the N3 stage in the discovery set (p = 0.036). In the com-

bined set, we found a significant group difference in percentage of sleep

time spent in stage N3 (p = 0.030).

3.2 | Discovery analysis of sleep EEG features

3.2.1 | The SWA power

For the resilient and vulnerable subjects in the discovery set, we com-

puted the SWA spectral power during the N2 and N3 stages of the first

sleep cycle. We found that the vulnerable group had a consistently

higher SWA power than the resilient group across all EEG channels

(Figure 1a–c [Discovery]). Of the four channels we examined, occipital

channel O1 showed a significant group difference (Figure 1b,c [Discov-

ery]) and a relatively large effect size (mean Cohen's d = 1.51; Table 3

and Figure 1d [Discovery]), with its 95% CI excluding zero. Two other

channels, C3 and O2, also exhibited moderate effect sizes (mean Cohen's

d of 1.07 and 0.91, respectively) with the 95% CIs excluding zero.

Although these two channels showed significant group differences only

in the absence of multiple-comparison correction (that is, using α = 0.05

instead of α = 0.0042), the group differences were in the same direction

as that of channel O1, suggesting that these channels can still provide

useful information for discriminating resilient from vulnerable subjects.

3.2.2 | The SWA rise rate

To compute the rate at which the SWA power changed during the ini-

tial period after sleep onset, for each EEG channel (Figure 2a) of a

given subject, we fitted a regression line to the SWA power data of

the first 20 min of sleep, and used its slope as an estimate of SWA rise

rate. Figure 2b shows the time course of the group-averaged SWA

power in channel O1, demonstrating the higher rate at which the

SWA power increased in the vulnerable group. Similarly, in all four

channels, we observed that the SWA power increased consistently at a

higher rate for the vulnerable group (Figure 2c [Discovery]).

Although none of the channels showed a significant group difference

TABLE 3 Assessment of discovery, reproducibility, and combined datasets.

Sleep EEG measure

p of group differences Effect size (95% CI)

Discoverya Reproducibilityb Combinedc Discovery Reproducibility Combined

SWA power

C3 0.018* 0.112 0.004† 1.07 (0.29, 2.36) 0.74 (0.02, 1.66) 0.94 (0.40, 1.58)

C4 0.077 0.260 0.056 0.68 (�0.08, 1.71) 0.46 (�0.31, 1.27) 0.59 (0.05, 1.24)

O1 0.003† 0.260 0.001† 1.51 (0.72, 2.99) 0.58 (�0.17, 1.42) 1.02 (0.49, 1.72)

O2 0.028* 0.371 0.038* 0.91 (0.20, 1.88) 0.37 (�0.36, 1.26) 0.65 (0.11,1.28)

SWA rise rate

C3 0.053 0.012* 0.001† 0.84 (0.14, 1.65) 1.10 (0.53, 1.89) 1.00 (0.54, 1.53)

C4 0.265 0.012* 0.007* 0.51 (�0.25, 1.28) 1.11 (0.43, 2.03) 0.81 (0.30, 1.40)

O1 0.005* 0.019* 0.000† 1.32 (0.69, 2.29) 0.85 (0.16, 1.68) 1.12 (0.62, 1.71)

O2 0.008* 0.012* 0.000† 1.02 (0.40, 1.85) 0.97 (0.31, 1.79) 1.03 (0.57, 1.57)

Spindle frequency

C3 0.018* 0.977 0.081 �1.04 (�2.04, �0.36) �0.01 (�0.80, 0.87) �0.51 (�1.08, 0.03)

C4 0.040* 0.977 0.135 �0.83 (�1.70, �0.13) 0.01 (�0.77, 0.89) �0.42 (�0.98, 0.11)

O1 0.065 0.624 0.107 �0.83 (�1.82, �0.13) �0.09 (�0.96, 0.70) �0.47 (�1.10, 0.08)

O2 0.137 0.840 0.229 �0.70 (�1.61, 0.00) 0.06 (�0.83, 0.84) �0.33 (�0.94, 0.21)

aThirteen resilient, 12 (SWA power and SWA rise rate) or 13 (spindle frequency) vulnerable.
bTwelve resilient, 12 vulnerable.
cTwenty-five resilient, 24 or 25 vulnerable.

*Values indicate p < 0.05, uncorrected for multiple comparisons.†Values indicate p < 0.0042, Bonferroni-corrected for multiple comparisons.

Abbreviations: CI, confidence interval; EEG, electroencephalography; SWA, slow-wave activity.
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(Figure 2c [Discovery] and Table 3), channel O1 showed a relatively large

effect size (mean Cohen's d = 1.32; Figure 2d [Discovery]) and a group

difference that approached statistical significance (p = 0.005). Occipital

channel O2 also exhibited a moderate effect size (mean Cohen's d = 1.02)

and a significant group difference in the absence of multiple-comparison

correction. Of the two central channels, only C3 exhibited a moderate

effect size (mean Cohen's d = 0.84). Overall, all four channels showed

group differences in the same direction, and three of them (C3, O1, and

O2) exhibited moderate to large effect sizes with their 95% CIs

excluding zero.

3.2.3 | Sleep spindle frequency

We detected sleep spindles in each channel (Figure 3a,b), computed a

frequency value for each spindle, and averaged the frequencies across

the spindles detected during the N2 and N3 stages for the entire

night. We found a consistent trend across all four channels, with a

lower spindle frequency for the vulnerable group (Figure 3c [Discov-

ery] and Table 3). Although this effect was not significant in any of

the channels, central channels C3 and C4 and occipital channel O1

showed moderate effect sizes (mean Cohen's d of �1.04, �0.83, and

F IGURE 2 Group differences and their effect sizes for slow-wave activity (SWA) power rise rate. (a) Electroencephalogram (EEG) channel
locations on the scalp. (b) Time course of mean SWA power computed from occipital channel O1 for the discovery set (solid line and shading
indicate mean ± one standard error). (c) Z-scored SWA slope group differences for each of the four EEG channels based on the discovery,
reproducibility, and combined sets. SWA slope was computed from line fits to the SWA power time course for individual subjects. Error bar
indicates one standard error. Asterisk (*) indicates p < 0.05 uncorrected for multiple comparisons and dagger (†) indicates p < 0.0042, corrected
for multiple comparisons. (d) Effect size of SWA slope for each of the four EEG channels based on the discovery, reproducibility, and combined
sets. Positive values indicate that SWA slope was larger in the vulnerable group when compared to the resilient group. Error bar indicates 95%
confidence interval of the effect size.
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�0.83, respectively; Figure 3d [Discovery] and Table 3) with 95% CIs

excluding zero. Channels C3 and C4 also showed significant group dif-

ferences in the absence of multiple-comparison correction (for chan-

nel C3 that had the largest effect size of all channels, group mean

values [1 SD] for spindle frequency were 13.24 [0.35] Hz for the resil-

ient group and 12.94 [0.28] Hz for the vulnerable group in Study D1;

and 12.91 [0.45] Hz for the resilient group and 12.50 [0.24] Hz for

the vulnerable group in Study D2).

The results presented in Figures 1–3 (Discovery columns of

panels C and D) show that each of the three EEG features showed

consistent trends across all four EEG channels. To determine the most

promising candidates of the 12 EEG feature-channel combinations

(three features � four channels), we aimed to select feature-channel

combinations for which we observed statistically significant group dif-

ferences (with or without correction for multiple comparisons) and

effect size 95% CIs that excluded zero. Applying these criteria, we

selected seven EEG feature-channel combinations for reproducibility

analysis: SWA power from channels C3, O1, and O2; SWA rise rate

from channels O1 and O2; and sleep spindle frequency from channels

C3 and C4.

F IGURE 3 Group differences and their effect sizes for sleep spindle frequency. (a) Electroencephalogram (EEG) channel locations on the
scalp. (b) Example of sleep spindles detected in central channel C3 in one of the subjects of the discovery set. (c) Z-scored sleep spindle frequency
group differences for each of the four EEG channels based on the discovery, reproducibility, and combined sets. Error bar indicates one standard
error. Asterisk (*) indicates p < 0.05, which is uncorrected for multiple comparisons. (d) Effect size of spindle frequency for each of the four EEG
channels based on the discovery, reproducibility, and combined sets. Negative values indicate that the vulnerable group's spindle frequency was
lower than that of the resilient group. Error bar indicates 95% confidence interval of the effect size.
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3.3 | Reproducibility analysis

Because no single metric can comprehensively capture reproduc-

ibility, we used three complementary statistical metrics in our

assessment of reproducibility (Table 4). For the SWA power, none

of the channels met all three statistical metrics. However, channel

C3 met two of the metrics: the reproducibility effect size fell within

the 95% CI of the discovery set (metric 2) and, for the combined

set, the group differences were statistically significant, and the

95% CI of the effect size excluded zero (metric 3). For SWA rise

rate, although none of the channels met all three statistical metrics,

channels O1 and O2 met two of them (metrics 2 and 3); channel C3

also met metrics 2 and 3; however, we did not consider this channel

further because it did not show a significant group difference in the

discovery set. For sleep spindle frequency, none of the channels

met any of the three metrics, indicating poor reproducibility.

Although none of the EEG feature-channel combinations showed

significant group differences (with multiple-comparison correction)

in the reproducibility set (metric 1), the group differences for SWA

power and SWA rise rate were in the same direction as that of the

discovery set. Taken together, these results suggest that, of the

three EEG features we assessed, SWA power in channel C3 and

SWA rise rate in channels O1 and O2 showed the ability to discrim-

inate between subjects who were resilient and those who were vul-

nerable to sleep loss.

3.4 | Secondary analyses

In addition to the primary analyses discussed above, we also per-

formed secondary analyses. For the three promising EEG feature-

channel combinations (SWA power from channel C3 and SWA rise

rate from channels O1 and O2) from our primary analysis, we also

examined the association between sleep-loss vulnerability

(as measured by the normalised PVT reaction times) and EEG-feature

values after pooling together subjects from the resilient, intermediate,

and vulnerable groups. Linear regression analysis of the combined set

showed that both SWA power and SWA rise rate increased with vul-

nerability to sleep loss (Figure S6; C3 SWA power: p = 0.0008 and

F4,69 = 5.37; O1 SWA rise rate: p = 0.0001 and F4,69 = 6.86; and O2

SWA rise rate: p = 0.00001 and F4,69 = 8.65). These results suggest

that SWA power and SWA rise rate are indicators of sleep-loss vul-

nerability. To further assess whether these two features provide inde-

pendent information, we examined the correlation between the

z-scored SWA power and the z-scored SWA rise rate for each EEG

channel for the combined set with all three subject groups pooled

together. The results showed that SWA power and SWA rise rate

were significantly correlated in all four EEG channels (Pearson's

product–moment correlation coefficient [r] range: 0.53–0.62;

p < 0.001 for all channels; range of 1� r2: 0.62–0.72; n=74 subjects),

suggesting that a partial overlap of information provided by these two

EEG features. However, 62%–72% of the variance in one feature was

TABLE 4 Summary of the reproducibility analyses.

Sleep EEG feature-channel pair
Metric 1: Reproducibility
set p < 0.0042† (p < 0.05*)

Metric 2: Reproducibility
set effect size within
95% CI of discovery set

Metric 3: Combined
set p < 0.0042†

and effect-size 95%
CI excludes zero

SWA power

C3a No (No) Yes Yes

C4 No (No) Yes No

O1a No (No) No Yes

O2a No (No) Yes No

SWA rise rate

C3 No (Yes) Yes Yes

C4 No (Yes) Yes No

O1a No (Yes) Yes Yes

O2a No (Yes) Yes Yes

Spindle frequency

C3a No (No) No No

C4a No (No) No No

O1 No (No) No No

O2 No (No) No No

Abbreviations: CI, confidence interval; EEG, electroencephalography; SWA, slow wave activity.
aDiscovery set group difference statistically significant (with or without multiple-comparison correction) with effect size 95% CI excluding zero.
†Bonferroni corrected for multiple comparisons.

*Uncorrected for multiple comparisons.
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still not accounted for by the other feature, suggesting a benefit of

using both features for discriminating the resilient from the vulnerable

group.

It is well documented that the power spectrum of neurophysio-

logical signals is composed of periodic (rhythmic) and aperiodic

(arrhythmic) components, with the aperiodic component exhibiting

power-law scaling (P/ 1
fαÞ, where power (P) drops off exponentially as

frequency (f ) increases, with its rate controlled by the exponent α

(Buzsáki et al., 2012; He et al., 2010). In the primary analyses, we

computed SWA power from the power spectrum consisting of both

F IGURE 4 Group differences and effect sizes for the periodic and aperiodic components of the power spectrum in N2 and N3 sleep stages of
the first sleep cycle. (a, b) Example data (averaged across subjects in each group) from channel O1 in Study D2, demonstrating the procedure of
separating the periodic and aperiodic components. (a) Log–log plots showing the mean aperiodic (dotted trace) and mean total (aperiodic plus
periodic, continuous trace) power spectral densities (PSD). (b) Left, log–log plot of the aperiodic component of the total PSD. Right, semi-log plot
of the periodic component of total PSD, obtained by subtracting the aperiodic component from the total PSD. The first two (from left) vertical
dotted lines mark slow-wave activity (SWA) band (0.2–4.0 Hz), and the last two vertical dotted lines mark the theta frequency band (4.0–7.5 Hz).

(c, d) Results from the combined study set (studies D1, D2, R1, and R2 pooled together; n = 25 resilient, 24 vulnerable). (c) Z-scored band-power
group differences for the aperiodic and periodic components of the SWA band, and the broadband (0.1–25.0 Hz) aperiodic component, for each
of the four EEG channels (C3, C4, O1, and O2). Error bar indicates one standard error. Asterisk (*) indicates p < 0.05 uncorrected for multiple
comparisons and dagger (†) indicates p < 0.0025, corrected for multiple comparisons. (d) Effect size of the aperiodic and periodic components of
the power spectrum. Positive values indicate that band power was larger in the vulnerable group relative to the resilient group. Error bar indicates
95% confidence interval of the effect size.
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the periodic and aperiodic components, making it unclear which

component(s) contributed to the observed effects. To address this

issue, we decomposed the power spectrum into its periodic and aperi-

odic components and extracted the power in each of the components

within the SWA band (Figure 4a,b). Pooling the data across the four

studies, we found that power in the periodic component of the SWA

band (0.2–4.0Hz), which reflects pure oscillatory activity, showed a

significant group difference (with or without multiple-comparison cor-

rections) in three out of four EEG channels (Figure 4c, Table 5).

Interestingly, power in the aperiodic component for both the SWA

band as well as the broadband (0.1–25.0Hz) also showed the same

pattern of results, where the same three EEG channels showed signifi-

cant group differences (with or without multiple-comparison correc-

tions), with effect sizes similar to those of the periodic component of

the SWA band (Figure 4c,d, Table 5). We also found that the periodic

component power in the theta band (4.0–7.5Hz), which is adjacent to

the SWA band, had poor discriminatory power (three out of four

channels did not show a significant group difference with or without

multiple-comparison corrections; the remaining channel [channel O1,

p=0.005] showed a significant group difference only in the absence

of multiple-comparison corrections). Taken together, these results

suggest that most of the discriminatory power resides within the

SWA band, and within this band, both the periodic and aperiodic com-

ponents are discriminatory.

4 | DISCUSSION

With the goal of identifying potential discriminatory markers of vul-

nerability to sleep loss, we examined three EEG features (SWA power,

SWA rise rate, and sleep spindle frequency) extracted from data

recorded during baseline nights of sleep. To this end, using data from

four sleep studies, each with its own sleep-loss challenge, experimen-

tal design, and set of participants, we discovered potential markers

using the data from the first two studies and independently assessed

reproducibility using the data from the remaining two studies. From

this two-step analysis, we determined that, although sleep spindle fre-

quency may not be a reliable discriminatory marker, SWA power dur-

ing the N2 and N3 stages of the first sleep cycle and SWA rise rate

during initial sleep are promising candidate markers of vulnerability to

sleep loss. These results are encouraging because we corroborated

them using independent studies involving different experimental con-

ditions, which strengthens our conclusions.

Previous studies that investigated physiological markers of vul-

nerability to sleep loss analysed features during periods of wakeful-

ness that followed baseline nights of sleep (Caldwell et al., 2005;

Chee et al., 2006; Chua et al., 2014; Cui et al., 2015; Mu

et al., 2005; Yamazaki et al., 2021; Yeo et al., 2015), with the excep-

tion of one study (Chua et al., 2014) that, as in our study, assessed

potential EEG markers during a baseline night. In that study, Chua

et al. (2014) found that there were no significant differences between

resilient and vulnerable groups when considering EEG spectral power

of NREM and REM episodes over the entire night or SWA (0.75–

4.5 Hz) computed in 2-h bins throughout the night. Their finding that

the SWA power during a baseline night is not discriminatory contra-

dicts our results, which showed a higher SWA power in the vulnerable

group. We can reconcile this discrepancy by noting that our definition

of SWA (0.2–4.0 Hz) included more low-frequency components than

that used by Chua et al. (2014), which is shifted by �0.5 Hz towards

higher frequencies compared to our definition of SWA. In addition,

the composition of the NREM stage signals we used to compute SWA

was different from that used by Chua et al. (2014). While they

included all NREM stages (N1, N2, and N3) for the first 2 h of sleep

irrespective of sleep-cycle identity, we restricted our SWA power

analysis to the N2 and N3 stages of the first sleep cycle. When we

repeated our SWA power calculations using the SWA frequency

range, NREM stages, and the 2-h time window used by Chua et al.

(2014), indeed we found that the effect size of all EEG channels was

reduced by an average of 20%, partially explaining the lack of effect

of SWA power in their study. These results suggest that spectral

power at frequencies as low as 0.2 Hz may have discriminative infor-

mation and that a sleep-cycle-based analysis may be necessary to

obtain useful information for discriminating resilient from vulnerable

individuals.

In addition to EEG spectral feature differences, we also found dif-

ferences in the sleep architecture measures of the resilient and vul-

nerable groups. Specifically, the percentage of sleep time spent in the

relatively lighter sleep stages N1 and N2 was higher in the resilient

group compared to the vulnerable group, although this effect was not

consistent across the discovery and reproducibility sets. However, we

TABLE 5 Statistical analysis of the periodic and aperiodic components of the electroencephalography channel power spectra.

EEG
channel

p of group differencesa Effect size (95% CI)

Periodic–SWA Aperiodic–SWA Aperiodic–broadband Periodic–SWA Aperiodic–SWA Aperiodic–broadband

C3 0.009* 0.008* 0.006* 0.82 (0.26, 1.49) 0.91 (0.35, 1.55) 0.91 (0.38, 1.53)

C4 0.121 0.116 0.126 0.52 (�0.01, 1.10) 0.55 (0.02, 1.12) 0.52 (�0.00, 1.09)

O1 0.002† 0.001† 0.002† 0.99 (0.44, 1.64) 1.04 (0.51, 1.70) 1.03 (0.49, 1.70)

O2 0.027* 0.024* 0.026* 0.68 (0.16, 1.29) 0.70 (0.16, 1.28) 0.68 (0.14, 1.34)

Abbreviations: broadband, 0.1–25.0 Hz; CI, confidence interval; EEG, electroencephalography; SWA, slow-wave activity (0.2–4.0 Hz).
aTwenty-five resilient, 24 vulnerable.

*Values indicate p < 0.05, uncorrected for multiple comparisons.†Values indicate p < 0.0025, Bonferroni-corrected for multiple comparisons.
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found that the percentage of sleep time spent in deep sleep (stage

N3) was higher in the vulnerable group compared to the resilient

group and the effect was consistent across the discovery, reproduc-

ibility, and combined sets. A previous study (Chua et al., 2014) that

examined sleep architecture during a baseline night found that the

resilient group spent more time in the N1 stage, as we found in our

reproducibility set. However, contrary to our findings, they reported a

lack of group differences in the percentage of sleep time spent in the

N2 or N3 stages. While we do not know the source of these contra-

dictions, the findings from their work and our study both indicate that,

compared to vulnerable subjects, resilient subjects spend more time in

a relatively lighter sleep (that is, in stage N1 or N2), potentially indicat-

ing a lesser sleep need. This observation and our finding that vulnera-

ble subjects spent more time in a deeper sleep stage (N3) than

resilient subjects support the notion that the need for sleep is com-

paratively higher in vulnerable individuals.

Group differences in EEG signal power in a narrow frequency

band, such as the SWA band, could result from differences in the peri-

odic activity in that band, a shift in the aperiodic component, or both

(Donoghue et al., 2020). We found that the resilient and vulnerable

groups differed in both the periodic activity in the SWA band and in

the broadband aperiodic activity. While the periodic activity differ-

ence could be attributed to sleep pressure, it is unclear what underlies

the broadband aperiodic activity difference. A previous EEG study

(Miskovic et al., 2019) found that the power spectrum in stage N3

(in the log–log space) is more negatively sloped than that of stage N2.

Although the authors of the study did not decompose the power

spectrum into periodic and aperiodic components, their slope estima-

tion procedure was largely tuned to capture the aperiodic component,

suggesting that the aperiodic activity is higher in N3 than in N2, with

a steeper negative slope. Given that, in the combined set, during the

first sleep cycle, vulnerable subjects spent significantly more of their

sleep time in stage N3 (Table 2) compared to resilient subjects, the

higher aperiodic activity (which is the dominant component of

the power spectrum) in the vulnerable subjects can be partly attrib-

uted to the sleep-stage differences between the two groups.

The rate at which SWA power rises during initial sleep has been

surmised to indicate sleep pressure (Dijk et al., 1990). While a few

studies have used SWA rise rate as a measure to assess sleep pressure

differences between groups of subjects with different ages (Chinoy

et al., 2014), disease states (Khatami et al., 2008), or gene variants

implicated in sleep (Bachmann et al., 2012), our study is unique in that

we examined the relationship between baseline night SWA rise rate

and vulnerability to sleep loss. Given that a faster SWA rise rate has

been shown to be indicative of a higher sleep pressure (Dijk

et al., 1990), our finding of a higher SWA rise rate at the beginning of

sleep in the vulnerable group suggests that these individuals normally

have a higher accumulated sleep pressure compared to resilient

individuals.

Although we did not observe significant group differences in spin-

dle frequency, the vulnerable group had a lower spindle frequency

consistently across all EEG channels in the discovery and combined

study sets. A previous sleep-loss study (Knoblauch et al., 2003)

indicated that sleep spindle frequency is inversely related to sleep

pressure based on observations that sleep spindle frequency is lower

during recovery nights when sleep pressure is higher relative to base-

line nights. Therefore, the trend of lower spindle frequency in the vul-

nerable group may be indicative of a persistently higher sleep

pressure in these individuals. However, further studies are necessary

to confirm this conclusion. Although spindle amplitude and density

have also been shown to be related to sleep pressure (Knoblauch

et al., 2003), in a secondary analysis of the spindle data, we did not

find any significant group differences for either of these additional

spindle features (with or without multiple-comparison corrections).

The biological basis for vulnerability to sleep loss includes inter-

individual differences in genetics, brain structure and function, sleep

homeostasis, and circadian influence (Tkachenko & Dinges, 2018).

Because SWA power and its rise rate during initial sleep are estab-

lished markers of homeostatic sleep pressure (Brunner et al., 1993;

Dijk et al., 1990), our results suggest that vulnerable individuals have

a higher accumulated sleep pressure despite the same time spent

awake prior to the sleep period analysed, compared to resilient indi-

viduals, suggesting that the vulnerable group accumulates homeo-

static sleep drive at a faster rate than the resilient group. Thus, we

speculate that during periods of sleep loss, the lingering higher sleep

pressure in the vulnerable individuals interferes more adversely with

attention processes, leading to a greater degradation of performance

in PVTs in the vulnerable group. In other words, sleep, which dissi-

pates sleep pressure, is more important for vulnerable individuals, for

whom lack of sleep leads to a greater impairment on vigilance tasks.

Supporting this conjecture, Viola et al. (2007) have shown that individ-

uals with a period circadian regulator 3 gene (PER35/5) allele as

opposed to the PER34/4 allelic version of the circadian clock gene

PER3 have a higher SWA power (indicating a higher sleep pressure)

during the first quarter of sleep periods and show a greater impair-

ment of neurobehavioural task performance with sleep loss. Taken

together, these results suggest that a higher persistent sleep pressure

may contribute to a greater vulnerability to sleep loss.

4.1 | Limitations

Our study has limitations. First, sleep loss leads to several cognitive

deficits (Pilcher & Huffcutt, 1996), whereas the PVT mainly reveals

the level of sustained attention (Drummond et al., 2005). Thus, the

EEG features we found may not be predictive of changes in other

cognitive functions, such as working memory or decision-making

(Schnyer et al., 2009), due to sleep loss. However, sustained attention

(as measured by the PVT) is essential for a wide variety of tasks,

including driving, night watch, and air traffic control, in both civilian

and military settings. Therefore, our discovery of EEG features associ-

ated with sleep-loss vulnerability as identified by the PVT applies to a

broad set of tasks. Second, in the discovery set, we only found a sig-

nificant effect on SWA rise rate when we omitted multiple-

comparison corrections. However, we observed moderate to high

effect sizes and the feature values had a consistent trend across all
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EEG channels. This cumulative evidence, which is an important aspect

of reproducibility (Goodman et al., 2016), suggests that SWA rise rate

is a potentially valuable predictor of vulnerability to sleep loss. Third,

we applied z-score transformation within each study to bring the

EEG-feature values from the different studies into a common scale.

However, z-score-based prediction requires a group of test subjects

and cannot be used at the single-subject level. For group-level assess-

ment performed herein, this is likely not a severe limitation because

predicting vulnerability or resilience to sleep loss in many settings

(such as in the Armed Forces) is done at the group level. Finally, our

results are based on data from healthy young adults, limiting their

extendibility to heterogeneous and older populations.

5 | CONCLUSIONS

Although the adverse effects of compromised sleep are well estab-

lished, in many circumstances sleep loss is unavoidable. The ability to

identify an individual's vulnerability to sleep loss will not only help in

choosing resilient individuals for tasks requiring sustained attention

but will also aid in the development of appropriate countermeasures

to improve the performance and sleep hygiene of vulnerable individ-

uals, minimising fatigue-related accidents. Our findings that SWA

power and SWA rise rate computed from routine nights of sleep are

promising markers of vulnerability to sleep loss at the group level pro-

vide the first step in building machine-learning algorithms to deter-

mine individual-level discrimination. Importantly, because our findings

are based on a reproducibility analysis, we expect that our results will

be valid under different experimental conditions and will be indepen-

dently confirmed in future studies. With sleep loss being widespread

in modern society (Léger et al., 2008), our results have broad applica-

bility for identifying vulnerable individuals in a more effective manner,

as they obviate the need for time-consuming and costly sleep-loss

challenges.
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